Sub-second quenched-flow/X-ray microanalysis shows rapid Ca2+ mobilization from cortical stores paralleled by Ca2+ influx during synchronous exocytosis in Paramecium cells.
نویسندگان
چکیده
Though only actual local free Ca2+ concentrations, [Ca2+], rather than total Ca concentrations, [Ca], govern cellular responses, analysis of total calcium fluxes would be important to fully understand the very complex Ca2+ dynamics during cell stimulation. Using Paramecium cells we analyzed Ca2+ mobilization from cortical stores during synchronous (< or = 80 ms) exocytosis stimulation, by quenched-flow/cryofixation, freeze-substitution (modified for Ca retention) and X-ray microanalysis which registers total calcium concentrations, [Ca]. When the extracellular free calcium concentration, [Ca2+]e, is adjusted to approximately 30 nM, i.e. slightly below the normal free intracellular calcium concentration, [Ca2+]i = 65 nM, exocytosis stimulation causes release of 52% of calcium from stores within 80 ms. At higher extracellular calcium concentration, [Ca2+]e = 500 microM, Ca2+ release is counterbalanced by influx into stores within the first 80 ms, followed by decline of total calcium, [Ca], in stores to 21% of basal values within 1 s. This includes the time required for endocytosis coupling (350 ms), another Ca2+-dependent process. To confirm that Ca2+ mobilization from stores is superimposed by rapid Ca2+ influx and/or uptake into stores, we substituted Sr2+ for Ca2+ in the medium for 500 ms, followed by 80 ms stimulation. This reveals reduced Ca signals, but strong Sr signals in stores. During stimulation, Ca2+ is spilled over preformed exocytosis sites, particularly with increasing extracellular free calcium, [Ca2+]e. Cortically enriched mitochondria rapidly gain Ca signals during stimulation. Balance calculations indicate that total Ca2+ flux largely exceeds values of intracellular free calcium concentrations locally required for exocytosis (as determined previously). Our approach and some of our findings appear relevant also for some other secretory systems.
منابع مشابه
Microdomain Ca2+ Activation during Exocytosis in Paramecium Cells. Superposition of Local Subplasmalemmal Calcium Store Activation by Local Ca2+ Influx
In Paramecium tetraurelia, polyamine-triggered exocytosis is accompanied by the activation of Ca2+-activated currents across the cell membrane (Erxleben. C., and H. Plattner. 1994. J. Cell Biol. 127:935-945). We now show by voltage clamp and extracellular recordings that the product of current x time (As) closely parallels the number of exocytotic events. We suggest that Ca2+ mobilization from ...
متن کاملCa2+ release from subplasmalemmal stores as a primary event during exocytosis in Paramecium cells
A correlated electrophysiological and light microscopic evaluation of trichocyst exocytosis was carried out the Paramecium cells which possess extensive cortical Ca stores with footlike links to the plasmalemma. We used not only intra- but also extracellular recordings to account for polar arrangement of ion channels (while trichocysts can be released from all over the cell surface). With three...
متن کاملRefilling of cortical calcium stores in Paramecium cells: in situ analysis in correlation with store-operated calcium influx.
This is the first thorough study of refilling of a cortical calcium store in a secretory cell after stimulation in which we combined widely different methodologies. Stimulation of dense-core vesicle ("trichocysts") exocytosis in Paramecium involves a Ca(2+) -influx" superimposed to Ca(2+) -release from cortical stores ("alveolar sacs" (ASs)). In quenched-flow experiments, membrane fusion freque...
متن کاملRapid downregulation of the Ca2+-signal after exocytosis stimulation in Paramecium cells: essential role of a centrin-rich filamentous cortical network, the infraciliary lattice.
We analysed in Paramecium tetraurelia cells the role of the infraciliary lattice, a cytoskeletal network containing numerous centrin isoforms tightly bound to large binding proteins, in the re-establishment of Ca2+ homeostasis following exocytosis stimulation. The wild type strain d4-2 has been compared with the mutant cell line Delta-PtCenBP1 which is devoid of the infraciliary lattice ("Delta...
متن کاملSub-second calcium coupling between outside medium and subplasmalemmal stores during overstimulation/depolarisation-induced ciliary beat reversal in Paramecium cells.
As amply documented by electrophysiology, depolarisation in Paramecium induces a Ca(2+) influx selectively via ciliary voltage-dependent Ca(2+)-channels, thus inducing ciliary beat reversal. Subsequent downregulation of ciliary Ca(2+) has remained enigmatic. We now analysed this aspect, eventually under overstimulation conditions, by quenched-flow/cryofixation, combined with electron microscope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of cell biology
دوره 79 9 شماره
صفحات -
تاریخ انتشار 2000